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ABSTRACT 
 

A multivariate empirical model is used to show that predictability of annual mean SST in 

both the tropical and North Pacific oceans is mostly limited to a few years, despite the 

presence of spectral peaks on decadal timescales. The model used is a linear inverse 

model (LIM) derived from the observed simultaneous and one-year lag correlation 

statistics of July-June averaged SST from the Hadley Centre Global Sea Ice and Sea 

Surface Temperature (HadISST) dataset for the years 1900-2002. The model accurately 

reproduces the power spectra of the data, including interannual and interdecadal spectral 

peaks that are significant relative to univariate red noise. Eigenanalysis of the linear 

dynamical operator yields propagating eigenmodes that correspond to these peaks but 

have very short decay times and thus limited predictability. What long-term predictability 

exists appears due to two stationary eigenmodes, one similar to the 1900-2002 trend and 

the other representing multidecadal fluctuations. Predictability of these two stationary 

eigenmodes is significantly enhanced by tropical-North Pacific coupling. Neither 

stationary eigenmode is well captured in the control run of any coupled GCM in the 

CMIP project of the IPCC Fourth Assessment Report (AR4), perhaps because in all the 

GCMs tropical SST decadal variability is too weak and North Pacific SSTs are too 

independent of the Tropics.  

A key implication of this analysis is that the Pacific Decadal Oscillation (PDO) may 

represent not a single phenomenon but rather the sum of several processes, each of which 

represent different spatial patterns whose temporal evolution can be separately modeled 

as red noise with differing autocorrelation timescales. The sum of these red noises can 

give rise to apparent PDO “regime shifts” and seeming characteristics of a long memory 
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process. Such shifts are not predictable beyond the timescale of the most rapidly 

decorrelating noise, less than two years. Both the expected duration of regimes, and 

multidecadal variation in the correlation of the PDO with the Tropics, depend upon the 

relative amplitudes of different eigenmodes and need not reflect any change in underlying 

dynamics. 
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1 Introduction 

Predictability of the atmosphere on annual to decadal timescales comes primarily from 

the ocean. Observations of spectral peaks on these timescales in both the North Pacific 

and Tropical IndoPacific oceans, particularly from long-term proxy data (Evans et al 

2001; Biondi et al 2001; D’Arrigo et al. 2001; Gedalof et al. 2002; D’Arrigo et al. 2006), 

as well as modeling studies of oceanic dynamics acting on multiyear timescales (Venzke 

et al. 2000; Schneider and Miller 2001; Schneider et al. 2002; Scott and Qiu 2003), 

suggest some decadal (or at least greater than interannual) oceanic predictability may 

exist. In addition, there has been much interest in so-called “regime shifts” in the climate 

system, conspicuously rapid transitions between relatively stable atmospheric and 

oceanic states that appear to occur roughly every few decades (e.g., Trenberth and Hurrell 

1994; Hare and Mantua 2000) and perhaps drive similar changes in marine ecosystems 

(e.g. Miller et al. 1994; Mantua et al. 1997; Benson and Trites 2002; Miller et al. 2004). 

A key unresolved question has been how North Pacific sea-surface temperature (SST) 

predictability is affected by mechanisms of decadal variability “internal” to the 

extratropics, versus mechanisms driven from the Tropics and/or that drive the Tropics. 

Many modeling studies consider the North Pacific in isolation, where extratropical 

atmospheric variability that is temporally incoherent but spatially coherent drives both a 

local SST response due to anomalous surface fluxes and Ekman advection, and a remote 

SST response in the Kuroshio-Oyashio extension region1 due to oceanic Rossby waves. 

Multi-decadal spectral peaks in this view are then due to stochastically forced spatial 

                                                
1 Qiu (1995) shows observational evidence indicating that the Kurashio and Oyashio extensions are 
separate at high resolution. 
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resonance and/or to coupled air-sea feedback (Frankignoul et al. 1997; Jin 1997; 

Saravanan and McWilliams 1998; Weng and Neelin 1999; Seager et al. 2001; Schneider 

et al. 2002). Observational analyses have identified patterns that statistically explain 

much SST variability (e.g., Deser and Blackmon 1995; Zhang et al. 1997; Mantua et al. 

1997; Livezey and Smith 1999; Tourre et al. 1999; Deser et al. 2004; An and Wang 

2005), finding some “modes” of North Pacific SST variability that appear related to the 

Tropics and some that do not. In general, however, limitations of the statistical analyses 

make dynamical interpretation unclear, especially concerning disentangling tropical 

influences from purely internal North Pacific dynamics. 

That there is at least some tropical influence upon North Pacific decadal variability seems 

clear (Trenberth and Hurrell 1994; Zhang et al. 1997; Evans et al. 2001; Newman et al. 

2003b; Seager et al. 2004). For leads of a few months, the dominant mode of tropical 

SST variability, El Niño-Southern Oscillation (ENSO), is highly correlated year-round 

with the dominant mode of North Pacific variability, the Pacific Decadal Oscillation 

(PDO), as a result of the atmospheric bridge (Alexander et al. 2002). Because of 

wintertime re-emergence (Alexander et al. 1999), North Pacific SSTs also have year-to-

year memory. Thus, a simple model of the PDO-ENSO relationship can be constructed 

(Newman et al. 2003b; hereafter NCA) showing that, just as the ocean acts to redden 

atmospheric noise (Frankignoul and Hasselmann 1977), it also acts to redden the ENSO 

signal. That is, the observed spatial pattern of Pacific SST decadal variability, with 

relatively higher amplitude in the extratropics than in the Tropics, should be at least 

partly a consequence of a reddened ENSO response (NCA).  
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Although useful conceptually, the NCA model is limited by its simplicity. For example, 

the univariate approach restricts representation of Tropical and North Pacific SST 

anomalies to a single pattern each. However, North Pacific variability is not equally 

sensitive to all parts of the Tropics (e.g., Alexander et al. 2002; Barsugli and 

Sardeshmukh 2002), and decadal variability within the Tropics does not coincide 

precisely with interannual variability (Zhang et al. 1997; Deser et al 2004). Decadal 

variability in the North Pacific is not represented by the PDO alone (Deser and Blackmon 

1995; Nakamura et al. 1997; Bond et al. 2003) and interactions between different parts of 

the basin are important on decadal timescales (Schneider and Cornuelle 2005). Thus a 

multivariate analysis is clearly preferable. 

Another key limitation of the NCA model is that it assumes a perfect forecast of ENSO, a 

restriction that would be preferable to relax, especially since it is possible that the North 

Pacific is not merely forced by the Tropics but may force the Tropics and/or be coupled 

to it (Gu and Philander 1997; Barnett et al 1999; Schneider et al 1999; Vimont et al. 

2001, 2003; Solomon et al 2003). Thus, to investigate variability and predictability of the 

North Pacific, the Tropics must be included as part of the system, not external to it.  

To extend the NCA analysis, we will apply linear inverse modeling (LIM) to a state 

vector constructed from Tropical and North Pacific SSTs. LIM attempts to empirically 

extract the linear dynamical system from simultaneous and time-lag covariance statistics 

of the system variables, and has been successfully used in geophysical contexts ranging 

from subseasonal atmospheric variability (Winkler et al. 2001; Newman et al. 2003a) to 

seasonal ENSO dynamics and prediction (Penland and Matrosova 1994; Penland and 

Sardeshmukh 1995; Penland 1996). LIM may be simply considered as a multivariate 
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analogue to the univariate red noise null hypothesis for SST variability first proposed by 

Frankignoul and Hasselman (1977). Unlike its univariate counterpart, however, 

multivariate red noise can have transient anomaly growth and both stationary and 

propagating anomalies, and thus spectral peaks (e.g., Penland and Sardeshmukh 1995). 

Also, predictability estimates from LIM are straightforward and can be understood from 

fundamental aspects of the linear system (Newman et al. 2003a; Chang et al. 2004). 

The outline of the paper is as follows.  Multivariate red noise and linear inverse modeling 

are discussed in section 2, and section 3 describes details of data and model. In section 4, 

the LIM constructed from 102 years of SST data is shown to reproduce the power spectra 

of the leading PCs, and it is also found that for forecast leads greater than one year most 

LIM forecast skill results from two stationary eigenmodes of the linear operator. Effects 

of tropical-extratropical coupling are investigated in section 5, and our analysis is applied 

to the output of 18 coupled GCMs in section 6, where it is suggested that the GCMs 

significantly underestimate tropical forcing of the North Pacific on both interannual and 

interdecadal timescales. Concluding remarks are in section 7. 

2 Multivariate red noise and linear inverse modeling 

2.1 A multivariate null hypothesis 

A standard approach to analyzing long-term datasets is to look for spectral “peaks” above 

a univariate red noise background. That is, one assumes a null hypothesis for a time 

series x: 

1) 

! 

dx

dt
= lx + "  
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where l < 0, -1/l is the decorrelation timescale and ξ represents white noise. Predictability 

of x is limited by l. Such a simple null hypothesis is often hard to beat; for example, 

monthly time series of the leading North Pacific pattern of both SST (Pierce 2001; 

Rudnick and Davis 2003) and sea level pressure (Percival et al. 2001) cannot be 

distinguished from univariate red noise at the 95% confidence level. In addition, from a 

SST prediction standpoint, atmospheric variability might as well be random, since the 

atmosphere varies so rapidly it cannot be predicted on the much longer dynamical 

timescales of the ocean. This natural timescale separation justifies the simple 

approximation (1) in which the ocean integrates forcing by weather approximated as 

white noise (Hasselmann 1976; Frankignoul and Hasselmann 1977), a picture perhaps 

only slightly modified by air-sea coupling (Barsugli and Battisti 1998).  

The concept underlying this approximation can be usefully extended to the more general 

case of multivariate nonlinear dynamics. That is, a timescale separation between “slow” 

dynamics and “fast,” or rapidly varying, nonlinearities can be shown to allow the 

approximation of a multivariate nonlinear tendency equation for a state vector x  as 

2) 

! 

dx

dt
= Lx + "  , 

the sum of stable and predictable linear dynamics plus unpredictable white noise ξ  (e.g., 

Papanicolaou and Kohler 1974; Hasselmann 1976; see also Penland 1996). [Note that for 

the problem considered in this paper, noise represents not only atmospheric variability 

but more generally any other rapidly decorrelating nonlinearity.] Put simply, variability is 

modeled as multivariate red noise. However, since the linear operator L is a matrix its 

dynamics are represented by the eigenanalysis Luj = uj λj, where uj are the eigenmodes 
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and λj are the corresponding eigenvalues that may be complex. This results in two critical 

differences between univariate and multivariate red noise. First, complex eigenvalues 

correspond to propagating eigenmodes with defined periods. Second, although all the 

eigenvalues are damped (that is, they have negative real parts), in most geophysical 

systems of interest L is nonnormal, so that the eigenvectors are not orthogonal and thus 

transient anomaly growth is possible (e.g., Farrell 1988). Since L is stable, an energy 

balance relationship called a fluctuation-dissipation relationship can be derived from (2):  

3) 

! 

LC
0

+ C
0
L
T

+Q = 0, 

where 

! 

C
0

= x(0)x(0)
T  is the zero-lag covariance matrix and Q is the noise covariance 

matrix which can have non-zero off-diagonal elements. 

2.2 Linear inverse modeling 

Obviously, not all nonlinear dynamical systems can be usefully represented by (2) (e.g., 

Penland 1989). Two approaches to determine if (2) is a good approximation are the 

“forward” and “inverse” methods. For the forward method, one might try to rewrite the 

physical equations in the form of (2). Such a derivation is likely extremely difficult for 

the full climate system. Alternatively, from (2), 

4) 

! 

C" = exp(L" )C0 = G(" )C0 

where 

! 

C" = x(" )x(0)T  is a time-lag covariance matrix at some lag τ. This suggests an 

inverse method, in which (given enough good data) L, as well as Q, can be estimated 

from observed Cτ and C0 for some specified lag τ=το, as described for example in 

Penland and Sardeshmukh (1995). An effectively linear, stochastically forced model of a 
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system thus constructed is called a Linear Inverse Model (LIM) (Penland 1989; Penland 

and Ghil 1993; Penland 1996; Delsole and Hou 1999; Johnson et al. 2000; Winkler et al. 

2001; Newman et al. 2003a). In principle, L obtained through LIM should be identical to 

L obtained from the forward method.  

Whether the LIM is a good representation of the data is tested a posteriori, as described in 

the above-cited references. Here we stress one important point. If the dynamics of x are 

effectively linear, it should not matter what lag το is used to determine L. That is, 

! 

C"1
= exp(L" 1 )C0  and 

! 

C" 2
= exp(L" 2 )C0 . The simplest test of LIM is to determine L 

from many different lags and then compare each L. Unfortunately, if the “true” L has 

some relatively high-frequency eigenmodes, then lags τ that are about an eigenmode half-

period cannot be used to determine L, even though G(τ) can be determined. This 

“Nyquist problem” (Penland and Sardeshmukh 1995) occurs for all linear dynamical 

systems, so it does not necessarily invalidate the assumption of linearity. An alternative 

test is to determine if L, determined at one shorter lag το, reproduces the observed 

autocorrelation of x at all longer lags from (4) (Winkler et al. 2001; Newman and 

Sardeshmukh 2006). In this paper, we will employ the related calculation wherein 

observed power spectra of x are compared to those predicted by LIM. 

2.3 Estimating predictability from LIM 

LIM results in straightforward predictability estimates (Newman et al. 2003a). Briefly, 

given (2), forecasts made for lead τ are 

5) 

! 

ˆ x (t + " ) = G(τ) x(t).  
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LIM forecast errors 

! 

e(t + " ) = x(t + " ) # ˆ x (t + " ) are random and have covariance E(τ) 

= C0 – G(τ)C0GT(τ). Forecast skill measured by the average anomaly correlation ρ(τ) 

between forecast and verification anomalies is a function of S, the forecast signal-to-noise 

ratio, as  

6) 

! 

"(# ) =
S

[1 + S
2
]
1
2

 

(Sardeshmukh et al. 2000). The LIM assumes noise is independent of the state; so on 

average higher forecast skill is directly related to stronger predictable signal (Newman et 

al. 2003a). Therefore, long-range forecasts have highest skill for relatively large initial 

amplitude in the least-damped eigenmodes of L. 

3 Model details and data 

3.1 SST data and EOF analysis 

The dataset used was essentially the same as used by NCA. SSTs were from the Hadley 

Sea Ice and Sea Surface Temperature analysis (HadISST; Rayner et al. 2003) for the 

years 1900–2002. Similar calculations with Kaplan SST data (Kaplan et al. 1998; not 

shown) gave qualitatively similar results. The data were averaged into 5x5 degree 

gridboxes. Data were averaged into annual means extending from July through June of 

the following year. Anomalies were determined by removing the 1950/51–2001/02 

climatological annual mean. Empirical orthogonal functions (EOFs) were determined for 

the same period, and then earlier data were projected onto these patterns to produce 102 

yr time series for each EOF. NCA determined EOFs from monthly data and then took a 

July-June mean of the resulting time series, but this made very little difference in our 
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analysis. Prior to 1950, the general paucity of data may make difficult a determination of 

dynamics on seasonal timescales, but HadISST annual means for that period appear 

dynamically relevant (Rayner et al. 2003). NCA showed that using a July-June mean 

might avoid some seasonality issues for tropical variability, North Pacific variability, and 

the tropical-North Pacific relationship. However, seasonality is likely still relevant to 

decadal variability (Vimont 2005).  

EOFs were determined separately for the Tropics (200S-200N and 600E-600W) and the 

North Pacific (210N-600N). The three leading EOFs for each field are shown in Fig. 1. 

Annual averages reduce the number of degrees of freedom, so few EOFs are needed to 

explain a significant fraction of variance of either field. The leading EOFs dominate the 

variability of their respective fields and are typically named “ENSO” and the “PDO.” 

3.2 Construction of LIM 

The SST state vector is 

7) 

! 

x =
x
N

x
T

" 

# 
$ 

% 

& 
' , 

where xN is anomalous North Pacific SST and xT is anomalous Tropical SST, so that (2) 

becomes 

8) 

! 

dx

dt
=
d

dt

x
N

x
T

" 

# 
$ 

% 

& 
' =

L
NN

L
NT

L
TN

L
TT

" 

# 
$ 

% 

& 
' 
x
N

x
T

" 

# 
$ 

% 

& 
' +

(
N

(
T

" 

# 
$ 

% 

& 
' . 

Here ξN and ξT are white noise forcings of xN and xT, respectively. Note that separating 

Tropical and North Pacific SST explicitly in x allows diagnosis of tropical-North Pacific 

interactions through LNT and LTN (Newman et al. 2000; Winkler et al. 2001). Also, since x 
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represents annual means, the noise can include variability that, while not predictable over 

the course of an entire year, may be predictable for a few months. 

Defining the state vector solely in terms of SST is perhaps necessary given data 

limitations for other atmospheric and oceanic circulation variables. Certainly, other 

variables related to important physical processes such as surface fluxes and oceanic 

advection are important to SST evolution. The inverse model does, however, implicitly 

include the effects of all other variables linearly related to SST. This is an important 

distinction from a forward dynamical model in which the evolution of the state vector is 

governed only by the explicitly represented interactions among its components. 

The leading 7 EOFs of anomalous Tropical SST and the leading 3 EOFs of anomalous 

North Pacific SST were retained for the model. The time-varying coefficients of these 

EOFs, i.e., the principal components (PCs), define a 10-component state vector x. The 

retained tropical SST EOFs account for 91% of tropical variance, while the North Pacific 

SST EOFs capture about 80% of the variance in the central and western North Pacific, 

though only about 64% of the domain-integrated variance. A lag of το=1 yr was used to 

determine L. Constructing a LIM from longer lags and/or more EOFs produces 

qualitatively similar results for G, but results in the Nyquist problem for L discussed in 

section 2. 

Finally, the LIM must be tested on data independent of that used to determine L. 

Estimates of L and of forecast skill were cross-validated as follows. We sub-sampled the 

data record by removing one decade, computed L via (3) for the remaining years, and 

then generated forecasts for the independent years. This procedure was repeated for each 
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year. All measures of forecast skill in this study are based upon these jack-knifed 

forecasts. 

4 Results 

4.1 Forecast skill 

Figure 2 shows forecast skill ρ(τ) for forecast leads of one and two years. Here, forecasts 

are compared with the complete (that is, untruncated in EOF space) gridded observations. 

Regions of little skill (ρ < 0.2) in the North Pacific coincide with regions where relatively 

less variance is explained by the leading three EOFs. Additional EOFs in xN increase skill 

to be no worse than about ρ = 0.3 in the Northeast Pacific for a one-year forecast, with 

higher-skill regions essentially unchanged. 

For two-year forecasts, highest LIM skill lies primarily outside the ENSO region. 

However, persistence skill is also high, especially in the far west Pacific and Indian 

ocean, so that differences between LIM and persistence skill (bottom two panels of Fig. 

2) are often small. The exception is the tropical Pacific, where persistence skill is 

negative due to the pronounced interannual cycle of ENSO. Additional EOFs greatly 

reduce, but do not eliminate, the large negative difference in the Northeast Pacific in the 

bottom panels. 

Examining skill by EOF (Fig. 3) shows good PDO and ENSO one-year forecast skill. In 

particular, inspection of the forecasts (not shown) finds that all notable transitions into 

positive and negative ENSO states are captured, as is possible for multivariate, but not for 

univariate, red noise. PDO one-year skill here (ρ = 0.64) may be closer to a realistic 
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estimate of skill than PDO skill in NCA (ρ = 0.74) since ENSO skill is no longer perfect. 

For both the PDO and ENSO, however, skill drops significantly for two-year forecasts.  

4.2 Power spectra 

As discussed in section 2.2, if (2) is a good model of x, the LIM should reproduce the 

entire power spectra of x. As a test, (2) is integrated forward for 100000 yr, using the 

method described in Penland and Matrosova (1994). The noise is generated by 

! 

" = q j# j

j

$ rj (t), where qj and (ηj)2 are the eigenvectors and eigenvalues, respectively, 

of Q, and rj(t) are independent Gaussian white noises with unit variance. One eigenvalue 

of Q is negative with small magnitude, representing insufficient sampling of the most 

strongly damped eigenmode of L (below). Reducing the projection of the noise upon this 

eigenmode by one-third results in a positive definite Q. Note that any truncation of Q 

means that the LIM will not exactly replicate C0.  

The resulting “data” is separated into 1000 100-yr time series. The observed spectra and 

the ensemble mean of the model spectra, determined using the Thomson multitaper 

method (Thomson 1982; Mann and Lees 1996), for the three leading PCs of both Tropical 

and North Pacific SST are shown in Figs. 4 and 5. Also, with 1000 realizations, the 95% 

confidence interval, shown with gray shading, can be determined in a Monte Carlo sense. 

The LIM reproduces the main features of the observed power spectra for all the PCs 

(including the remaining Tropical SST PCs not shown) on all timescales. Obviously, the 

mean LIM spectra are much smoother than observed, due to the relatively few degrees of 

freedom in the truncated EOF space. On the other hand, the irregularity of the observed 

spectra may simply be due to sampling, since no statistically significant peaks exist in the 
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observed spectra relative to multivariate red noise. The confidence intervals reflect 

substantial variation in the spectra of each 100-yr segment from the model run. Each 

segment can have pronounced peaks not always coincident with the observed peaks, as 

exhibited by the spectra of two different 100-yr segments also in Figs. 4 and 5. That is, 

this multivariate linear system implies that, if good SST data for the last few hundred 

years were available, we would find interannual and interdecadal spectral peaks for past 

centuries to be centered at somewhat different frequencies and have different amplitudes 

and/or widths compared to the twentieth century, without any change in the underlying 

dynamics on interannual and interdecadal timescales. This point has been emphasized for 

ENSO variability by Penland and Matrosova (1994), who constructed a LIM of three-

month running mean tropical SST that reproduced not only the spectra but also the case-

to-case evolution of both warm and cold ENSO events.  

Additionally, while for the entire model run the correlation of PDO with ENSO is 0.63  

(observed r=0.69), the correlation varies between 0.37 and 0.82 (95% confidence 

interval: 0.48-0.75) when computed from individual 100 year segments. For 5-year 

running means of the model output (that is, filtering to remove interannual variability) the 

range is even greater: the correlation for the full run is 0.64 (observations is 0.73) but for 

100-yr segments the 95% confidence interval is 0.33-0.85. Similarly, while the observed 

PDO-ENSO correlation varies from 0.77 to 0.67 for the two halves of the data record, 

correlation within individual 50-year segments of the model runs varies between 0.26 and 

0.87 (95% confidence interval: 0.42-0.79). Again, since L is constant, this variation is 

entirely due to noise in this multivariate system, suggesting that large changes in 

correlations between climate indices also do not necessarily reflect any change in the 



 16 

underlying dynamics, even on decadal timescales. Obviously, changes in dynamics on 

millennial timescales (e.g., Tudhope et al. 2001) are not ruled out here. 

4.3 Eigenanalysis of the linear dynamical operator 

To understand departures of both observed and LIM spectra from univariate red noise, we 

next perform an eigenanalysis of L. First, a caveat. It is always tempting to separate 

variability into a set of modes. However, variability results from the sum of contributions 

of the complete set of eigenmodes of L, 

9) 

! 

x = u j" j (t)
j

# , 

where αj(t) is the projection time series for the jth eigenmode. Unlike techniques that 

order modes by decreasing amount of variance (or covariance or correlation) explained, 

the least damped eigenmode is not required to explain the most variance. In fact, 

eigenmodes are generally not orthogonal (since L is generally not self-adjoint) and thus 

variance cannot be partitioned into individual modes. Eigenmodes are useful to the extent 

they provide insight into the dynamics represented by L and hence into the predictability.  

The eigenvalues and e-folding times (eft) of L are listed in Table 1, and leading 

eigenmodes (also sometimes called principal oscillation patterns, or POPs; Hasselmann 

1988; Penland 1989) are shown in Fig. 6. Eigenmode time series in Fig. 7 are determined 

by projecting the data onto the corresponding (biorthogonal) adjoint vectors vj; that is, vj 

are the eigenmodes of the adjoint operator 

! 

L
† defined under the L2 norm, so that 

! 

u i • v j = " ij  and thus 

! 

" j (t) = xv j

*  (e.g., Strang 1988; Farrell 1988). The two leading 

propagating eigenmodes (

! 

"
i
# 0) are reminiscent of a so-called “decadal ENSO” pattern 
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(Figs. 6a and b; u3) and an “interannual ENSO” pattern (Figs. 6c and d; u4). Both of these 

eigenmodes are needed to reproduce ENSO: α 4 (α3) is correlated with the leading 

tropical PC at 0.69 (0.43) (see also Penland and Sardeshmukh 1995). Phase propagation 

is such that the tropical SST anomaly leads the North Pacific anomaly, by about two 

years in the decadal ENSO (not shown) and by about one year in the interannual ENSO. 

As is typical of studies filtering Pacific SSTs into interannual and interdecadal bands 

(e.g., Zhang et al. 1997), the tropical SST portion of u3 has broader latitudinal extent than 

for u4. The North Pacific anomaly is also relatively stronger, consistent with the 

“reddened ENSO” null hypothesis (NCA). In addition, u3 has maximum tropical 

amplitude nearer to the dateline than u4, which could reflect not only greater decadal 

variability (e.g., Hazeleger et al 2005) but also greater extratropical sensitivity to SST 

anomalies in this location (Alexander et al. 2002; Barsugli and Sardeshmukh 2002). One 

might be tempted to relate the cosine and sine phases of u3. However, the eft is so short 

that in the presence of noise not even a quarter cycle can likely exist; consequently, 

neither propagating eigenmode oscillates with a well-defined period (Fig. 7). 

The two leading eigenmodes (Figs. 6e and f) are stationary and have considerably longer 

efts than any other eigenmode. Unsurprisingly, these eigenmodes also display the greatest 

persistence. [In contrast, the amplitude of the most damped eigenmode, also in Fig. 7, 

changes sign almost yearly.] The leading eigenmode, u1, looks very similar to the 1900-

2002 trend pattern (not shown), which also shows pronounced warming along the 

western and northern boundaries of the Pacific Ocean and in the Indian Ocean, with little 

amplitude in the ENSO and PDO regions. In fact, α1(t) is highly correlated (r = 0.86) 

with July-June global mean temperature determined from the monthly NASA GISS 
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Surface Temperature Analysis (GISTEMP) dataset (http://data.giss.nasa.gov/gistemp/; 

Hansen et al 1996, 1999, 2001; Reynolds et al 2002; red line in Fig. 7); note that 

amplitude of both time series decreases from the mid 1940’s to the mid 1960’s. The 

tropical portion of u1 is also very similar to the least damped eigenmode from a LIM 

constructed of three-month running mean Tropical SSTs during 1950-2002. Penland and 

Matrosova (2006) suggest this eigenmode may represent tropical variability separate 

from canonical ENSO evolution that nevertheless impacts ENSO predictability, and 

found that its associated time series peaked in the mid-1980’s. However, including the 

North Pacific results in a time series that continues to increase beyond this time (Fig. 7). 

The observed u1 trend is greater than almost 95% of the u1 trends in all 102-yr segments 

of the LIM model. 

The second eigenmode, u2, has strong amplitude in the North Pacific, with the maximum 

located west of the PDO maximum. The tropical amplitude is relatively weaker, although 

there is an equatorial maximum at the dateline, off-equatorial maxima in the eastern 

Pacific, and again a relatively large Indian Ocean anomaly. Similar features have been 

found by previous decadal variability studies. For example, u2 resembles the “global 

signal” found by Livezey and Smith (1999) in a rotated canonical correlation analysis of 

SST and United States surface temperatures for the 1950-92 period. Livezey and Smith 

suggested that this pattern reflected a trend possibly related to global warming, and as it 

is quite similar to the post-1950 trend pattern, it might be expected to dominate their 

analysis. The tropical portion of u2 also resembles the pattern identified by Deser et al. 

(2004) as related to an interdecadal signal, or “epoch difference,” in the Aleutian low, 

although their North Pacific anomaly is further east than in u2, perhaps because their 
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epoch difference pattern also appears to include a contribution from u3. Their analysis of 

1900-1998 data suggested that their pattern did not represent a long-term trend but rather 

had undergone a few changes of sign in the twentieth century; a successor study 

(D’Arrigo et al. 2006) found other possible sign reversals of the pattern before 1900. 

Almost half of the 102-yr segments of the model run have larger u2 trends than observed. 

The above results are qualitatively similar for different EOF truncations and different 

dataset periods. There are some quantitative changes in the eigenvalues, however. For 

example, removing different decades from the dataset (as in the cross-validation) makes 

the eft for the leading (second) eigenmode vary between 12 and 18 (4 and 7) years. 

Likewise, periods of propagating eigenmodes vary, between about 20 and 40 years for u3 

and between about 4.5 and 7 years for u4. Using the Kaplan dataset instead produces 

eigenvalues that also fall in these ranges, although all eigenmodes are more damped than 

their HadISST counterparts. Common to all cases, however, are two leading stationary 

eigenmodes plus an overdamped decadal ENSO eigenmode clearly distinct from an 

interannual ENSO eigenmode, all with the spatial characteristics described above. 

Stratifying forecast skill by eigenmode rather than by EOF clarifies the source of 

predictability. Results for forecast leads of one and two years are shown in Fig. 8, 

compared to predicted skill determined from the LIM using (6). Now apparent random 

variation of skill by PC (Fig. 3) is replaced by a strong relationship between skill and eft. 

For forecast leads beyond one year, useful skill resides primarily in the two leading 

eigenmodes, also clearly reflected in the forecast skill maps (Fig. 2). In fact, skill for u2 is 

above 0.5 for forecast leads up to 6 years. Note that little long-range skill is associated 

with u3, despite its long period, because its eft is so short. 
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In eigenmode space, (2) becomes a set of uncoupled univariate equations, 

10) 

! 

d" j

dt
= # j" j + ˆ $ j , 

where 

! 

ˆ " j  is white noise in eigenmode space. Another test of the LIM, and of the 

eigenmodes themselves, is to determine whether 

! 

ˆ " j  represents white noise, and 

consequently whether each time series αi(t) is univariate red noise. Consistent with the 

assumption of white noise we find that 

! 

ˆ " j , calculated as a residual from (10), is normally 

distributed and almost uncorrelated from year to year.  

4.4 Reconstructing the PDO as a sum of univariate red noises 

No single eigenmode can be identified as “the” PDO. That is, no individual time series 

αj(t) correlates with the PDO at a value higher than 0.47. Yet the LIM reproduces the 

entire PDO spectrum, suggesting that the PDO represents not a single mode but rather a 

superposition of different modes acting on different spatial and temporal scales. This is 

illustrated in Fig. 9 by comparing the observed PDO time series P(t) to a reconstruction 

from the sum of just three eigenmodes, 

! 

˜ 
P (t) = u

2
"

2
(t) + u

3
"

3
(t) + u

4
"

4
(t). The 

correlation of 

! 

˜ 
P  and P is 0.8; the difference 

! 

d = P " ˜ 
P  is mostly noise (the decorrelation 

timescale of d is less than one year) that projects on the most strongly damped 

eigenmodes. Interestingly, including u2, which has large amplitude in the PDO region, is 

important even though the correlation of α2 and the PDO is 0.2, because without it 

! 

˜ 
P  is 

correlated with P at only 0.65. 
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Fig. 9 also notes years commonly associated with “regime shifts” in the PDO (e.g., Hare 

and Mantua 2000; Deser et al. 2004). 

! 

˜ 
P  clearly reproduces these shifts, but here they 

represent not nonlinear state changes but rather random changes due to the summation of 

these univariate red noises. Also, these shifts arise from neither constructive interference 

nor phase-locking of multidecadal oscillations of differing periods (e.g., Minobe 1999). 

Since the eigenmodes that contribute to the PDO are nonorthogonal, a white noise “kick” 

can perturb all three modes to some degree. On the other hand, the regime shifts do not 

seem to correspond to consistent changes of the three eigenmodes. For example, while 

the shift in the early 1940’s occurs as u2 begins a long period of negative values (after a 

period of weakly positive to neutral values), the mid 1970’s shift occurs about a decade 

after u2 changed sign. Some authors have also suggested a shift occurred in 1998, but as 

of mid-2002 the PDO has had mostly positive values (not shown). This possibly 

transitory excursion of negative PDO values is consistent with the strong negative 

excursion of u3, which due to its very short eft is unlikely to be short-lived.  

5 Impact of Tropical-North Pacific coupling  

As noted in section 3, (8) allows diagnosis of the impact of tropical-North Pacific 

coupling upon SST variability. This is done by first repeating the model run of section 

4.2, executing additional 100000 yr runs in which either (1) the Tropics and North Pacific 

are uncoupled (

! 

L
TN

= L
NT

= 0), and noise in the Tropics and North Pacific is 

uncorrelated (

! 

"
N
"
T

T

= 0) (“fully uncoupled”); (2) the Tropics and North Pacific are 

uncoupled (

! 

L
TN

= L
NT

= 0), but the original correlated noise eigenmodes are used; that 

is, noise fluctuates with coherent tropical-North Pacific patterns (“partially uncoupled”); 



 22 

(3) the Tropics do not force the North Pacific (

! 

L
TN

= 0) and 

! 

"
N
"
T

T

= 0); or (4) the 

North Pacific does not force the Tropics (

! 

L
NT

= 0 and 

! 

"
N
"
T

T

= 0). Runs (3) and (4) 

are repeated with the tropical-North Pacific correlated noise included. The fully 

uncoupled model (green lines in Figs. 4 and 5) results in two independent dynamical 

systems,  

11) 

! 

dx
N

dt
= L

NN
x
N

+ "
N

 

and  

12) 

! 

dx
T

dt
= L

TT
x
T

+ "
T
. 

Note that 

! 

L
NN

 is different than the linear operator (say, 

! 

ˆ 
L 

NN
) that would be obtained from 

the LIM of just xN alone, since the latter would involve actual evolution of North Pacific 

SST, which includes tropical forcing. That is, we are trying to remove the effects of xN 

upon xT and vice versa, so that (11) represents only “internal” North Pacific dynamics 

and (12) represents only “internal” tropical dynamics. As an important caveat, “coupling” 

here refers to the relationship of xN with xT, without differentiating either which parts of 

the state vectors are most important or whether the connections are through the 

atmosphere and/or through the ocean. 

PDO-ENSO correlations for each run, for both annual means and five-year running 

means, are compared with correlations from the full LIM and from observations in Fig. 

10a. Coherence between the PDO and ENSO (Fig. 10b) shows no interannual PDO-

ENSO relationship when the Tropics do not force the North Pacific. Conversely, there is 
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no predictable effect of the North Pacific upon the Tropics on interannual timescales, 

although there is an unpredictable effect that occurs when noises in the Tropics and North 

Pacific are spatially correlated, a result consistent with seasonal footprinting (Vimont et 

al. 2001, 2003; Seager et al. 2004). On decadal timescales, the PDO-ENSO relationship is 

about equally dependent upon tropical and North Pacific forcing.  

How coupling affects L can be understood through eigenanalysis of the uncoupled 

dynamical system (11) and (12). Eigenanalysis of LNN results in a pair of propagating 

eigenmodes with an 18.8 yr period and 3.9 yr eft, and one strongly damped (0.5 yr eft) 

stationary eigenmode. The propagating eigenmode is consistent with behavior found in 

many models of North Pacific variability: an initial SST response to anomalous surface 

forcing in the central North Pacific (Fig. 11a) followed by a remote response in the KOE 

region (Fig. 11b) due to westward propagating (bottom panels of Fig. 11) oceanic Rossby 

waves with subsurface temperature anomalies brought to the surface in the KOE by 

mixing and/or gyre adjustment (e.g., Qiu 2000; Xie et al. 2000; Seager et al. 2001; 

Schneider et al. 2002). The eft is only long enough to follow a Rossby wave to the KOE, 

consistent with earlier studies (Seager et al. 2001; Schneider and Miller 2001) suggesting 

that knowledge of wind stress forcing over the North Pacific could result in predictability 

of a few years in the western North Pacific. 

Furthermore, the North Pacific power spectra resulting from the fully uncoupled run (Fig. 

5) show much more North Pacific decadal variability than for either the full LIM or 

observations, with the peak centered slightly less than the uncoupled eigenmode period 

because of the shorter eft. Thus, while LNN is consistent with previous theoretical and 

simple modeling studies of the North Pacific, the full dynamical operator is needed to 
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reproduce observations; that is, consideration of internal North Pacific dynamics without 

tropical interactions appears insufficient to understand North Pacific variability.  

While the leading tropical PC is only weakly affected by the North Pacific, coupling 

enhances decadal variability of the remaining tropical PCs (Fig. 4). This is consistent 

with the eigenmodes of LTT (not shown): the leading propagating eigenmode looks very 

similar to the tropical portion of u4 (Figs. 6cd) with only a minor increase in period and 

eft, and the other LTT eigenmodes also have counterparts in the eigenmodes of the full 

operator L but are relatively more damped.  

The leading coupled eigenmode u1 has no clear counterpart in the uncoupled eigenmodes, 

a considerably longer eft than any eigenmode of either LTT or LNN, and a tropical pattern 

that looks nothing like any eigenmode of LTT. Similarly, while tropical and North Pacific 

counterparts to u2 exist in the uncoupled eigenmodes, their efts are shorter, especially for 

the North Pacific. Furthermore, maxima of multidecadal variance for both the Tropics 

(PC 2) and North Pacific (PC 2 and 3) do not exist for the uncoupled system. This 

suggests that these eigenmodes and spectral peaks reflect a fundamentally coupled 

process.  

6 Comparison to coupled GCMs 

How well the dynamical system of observed Pacific SST described in this paper is 

replicated in coupled atmosphere-ocean GCMs is investigated for output from the 

Coupled Model Intercomparison Project (CMIP) for the current IPCC Fourth Assessment 

Report (AR4). The models, along with the lengths of the control runs used, are listed in 

Table 2; further details are available at http://www-



  

25 

pcmdi.llnl.gov/projects/cmip/index.php. As with the HadISST data, the GCM datasets 

were averaged, and/or interpolated where necessary, to the same grid and July-June 

annual means. Anomalies were then determined by removing the model climatology. For 

consistent comparison, and because it is the real system these sophisticated models are 

trying to simulate, the model data were projected onto the observed EOFs to produce PC 

time series in each model. Earlier analyses of CMIP model data (AchtuaRao and Sperber 

2002, 2006) that tended to claim somewhat better results for ENSO simulation were 

focused on an index of NINO3, a region in which model simulations are perhaps least 

erroneous (not shown). 

It is occasionally suggested that GCMs may appear different than the observed system 

because they represent different realizations of the climate state, not necessarily different 

physics. If we interpret the LIM confidence intervals as showing the possible range of 

realizations, however, then the spectra of all of the models (not shown) are statistically 

significantly different from the observed system. Differences between GCM and 

observed variability are also readily apparent by comparing the variance of Tropical (Fig. 

12) and North Pacific (Fig. 13) PCs, for both annual and five-year running means. Many 

of the models have an ENSO spectral peak whose period is too short, a well-known 

coupled GCM problem; not surprisingly, these models also have relatively too much 

variance on interannual timescales. In fact, virtually all the GCMs have tropical decadal 

variability that is less than observed. On the other hand, there is no apparent systematic 

error in the variance of the North Pacific PCs; most of the GCMs lie outside the LIM 

confidence intervals on annual timescales but are within the intervals on decadal 
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timescales. Perhaps most important, all the GCMs consistently underestimate the PDO-

ENSO correlation on both annual and decadal timescales, as is shown in Fig. 14. 

The leading eigenmodes likewise are inadequately simulated. As an example, the GCM 

data are projected onto these eigenmodes. Decorrelation timescales, the time the 

autocorrelation function has decreased to 1/e, are then determined for the resulting time 

series; note that for the propagating modes, the decorrelation includes the effect of 

propagation as well. These timescales are compared with the observed decorrelation 

timescales in Fig. 15. The leading eigenmodes show much less persistence in the GCMs 

than is observed. This is true even if the observed time series are detrended, which 

shortens the decorrelation timescale of u1 to about 3 yrs while leaving the other 

decorrelation timescales unchanged.  

This combination of underestimating both tropical decadal variability and ENSO-PDO 

correlation yet having more reasonable estimates of North Pacific decadal variability, 

along with low persistence of the leading eigenmodes, suggests that North Pacific SSTs 

in these GCMs may be too independent of the Tropics.  

7 Concluding Remarks 

A multivariate red noise model, empirically constructed from a one-year lag, can explain 

the observed power spectra of annual mean Tropical and North Pacific SST on both 

interannual and interdecadal timescales. Spectral peaks on decadal timescales that may 

represent slow physical oceanic processes also correspond to strongly damped 

propagating eigenmodes, so that predictability on these timescales is low (Scott 2003 

makes a similar point). Forcing of the North Pacific by the Tropics, and also forcing of 
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the Tropics by the North Pacific, is a critical element of Pacific decadal variability and 

predictability that appears poorly represented in coupled GCMs. The range of these GCM 

simulations appears outside what might be expected from a series of “real world” 

realizations, despite the fact that substantial variations in both the power spectra of, and 

the correlations between, the Tropics and North Pacific are possible even if the dynamics 

of annual-mean SST are fixed and multilinear. Thus, previous studies employing coupled 

GCMs likely underestimated the tropical contribution to North Pacific decadal variability 

and predictability. 

Virtually all long-range LIM skill comes from two stationary eigenmodes that have the 

longest e-folding times. Anomaly correlation skill of both eigenmodes is greater than 0.5 

for up to six years. The timeseries of the leading eigenmode has a 100-yr trend that is 

unlikely, but not impossible, to have occurred by chance in the multivariate linear system. 

The second eigenmode has a pattern somewhat similar to the multidecadal signal found 

by Deser et al. (2004) and D’Arrigo et al. (2006) and might represent natural decadal 

variability. Note, however, that this eigenmode does not propagate with a multidecadal 

period, but instead has a sufficiently long eft that it varies on a decadal timescale2. Both 

modes appear to have persistence and thus predictability significantly enhanced by 

Tropical-North Pacific coupling, and are poorly simulated by the coupled GCM control 

runs examined here. Whether one or both eigenmodes represent anthropogenic forcing 

(as suggested by Livezey and Smith (1999)), other external radiative forcing, natural 

decadal variability that these GCMs cannot capture, or some combination of the three, 

remains undetermined by our analysis. Certainly, the time series of the leading 

                                                
2 The ideal name for this mode would then of course be the Pacific Multidecadal Fluctuation (PMF). 



 28 

eigenmode has a strong correspondence to the global mean temperature trend often 

associated with anthropogenic effects. Of course, if the two least damped eigenmodes 

include externally forced variability, they should not be fully simulated by the IPCC 

control runs; definitive assessment awaits repetition of this analysis upon coupled GCMs 

forced with historical changes in radiative forcing. These eigenmodes might also 

represent nonstationarity artificially introduced by the SST reconstruction technique 

applied to differing amounts and quality of input data, but it is encouraging that the 

HadISST bias correction has a different spatial pattern than either eigenmode (Folland 

and Parker 1995), that in the Tropics the leading eigenmode has a different pattern than 

that of observation locations (Penland and Matrosova 2006), and that both eigenmodes 

also result from LIMs of post-1950 SST datasets, either annual means (not shown) or 

three-month running means (Penland and Matrosova 2006). 

Much of the interest in the PDO has come from its apparent relationship with regime 

shifts throughout the climate system and possibly in the marine ecosystem as well.  There 

has been related interest in whether the PDO might represent a “long-memory” process or 

1/f noise, with much more regime-like behavior than exists in univariate red noise 

(Percival et al. 2001; Rudnick and Davis 2003; Overland et al. 2006; see also Fraedrich et 

al. 2004). Such behavior might be characteristic, for example, of the slow manifold of a 

nonlinear dynamical system. Also, nonlinear models have been proposed to account for 

the decadal variability of ENSO (e.g., Tziperman et al. 1995; Timmermann and Jin 2002; 

Karspeck et al 2004) and it might be expected that, at a minimum, regime shifts in the 

Tropics would produce regime shifts in the North Pacific (Seager et al 2004). However, it 

is well known that long-memory behavior exists in processes that are the sum of 
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independent red noises (Beran 1994). Also, a multivariate linear system representing 

advection and diffusion, driven by Gaussian white noise, can produce 1/f noise (Milotti 

1995). Our results suggest that, on the annual time scale, the PDO represents not a single 

phenomenon but rather the sum of several different basin-scale processes (see also 

Schneider and Cornuelle 2005), each of which represent different spatial patterns whose 

temporal evolution can be separately modeled as red noise with differing autocorrelation 

timescales. Then, apparent PDO “regime shifts” are best understood not as sudden, yet 

potentially predictable, nonlinear changes between relatively stable climate states, but 

rather as random occurrences in a multivariate linear system driven by noise. 

Importantly, in this view regime shifts are not predictable beyond the timescale of the 

most rapidly decorrelating red noise, less than two years. In addition, once a regime shift 

has occurred, the expected duration of the regime may be predicted, depending upon the 

relative contributions of different eigenmodes. Based on this model, it appears unlikely 

that 1998 marked the beginning of a long period of negative PDO values. 

This dynamical model of annual-mean SST may constrain possible physical models of 

coupled atmosphere-ocean Pacific decadal variability. For example, predictable effects of 

the North Pacific upon the Tropics are associated with only stationary modes, as opposed 

to propagating modes where, say, North Pacific SST leads tropical SST. This result 

seems more consistent with atmospheric rather than oceanic teleconnections between the 

North Pacific and the Tropics, since it suggests a rapid (less than a year) connection 

between the two regions. Also, a theory that produces fairly regular cycling of anomalies 

on decadal timescales could be inconsistent with the short eft of u3. To the extent that 
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coupling appears important on decadal timescales, a physical model that considers just 

the North Pacific in isolation, or just the Tropics, will probably not explain observed 

variability. As a caveat, note that the LIM does not imply that realistic physical models 

must be actually linear, but rather be effectively linear; that is, with little nonlinear 

predictability on annual timescales. Ultimately, in the LIM framework further questions 

about important physical processes, as well as gauging the impact of predictable 

nonlinearities on seasonal timescales, will require explicitly including both atmospheric 

and subsurface ocean data in the state vector, using shorter time averaging and including 

seasonality, issues which are being considered in our current research. Surface heat fluxes 

may include state-dependent, or multiplicative, noise (Sura et al. 2005; 2006), which 

could also affect our results.  

Finally, decadal SST predictability does not necessarily equal decadal atmospheric 

predictability. Previous coupled GCM studies found some decadal predictability over 

ocean but also considerably lower predictability over land (e.g., Grotzner et al 1999; 

Pohlmann et al. 2004). Similarly, the fraction of variance on decadal timescales is much 

higher for SST than for surface pressure over the North Pacific (NCA). In fact, decadal 

signals in Pacific SST may be best used to forecast climate integrators, variables such as 

soil moisture and snowpack that tend to integrate anomalous climate forcing, which may 

have a stronger relationship to North Pacific SST than instantaneous atmospheric 

variables such as surface temperature (NCA). Alternatively, since operational seasonal 

North American temperature forecasts have some skill using the previous ten year mean 

(Huang et al. 1994), small additional skill may be gained by instead using a bivariate 

predictor based on the leading two eigenmodes of L. 
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Table 1. Eigenvalues σ and corresponding e-folding times (eft) of L. Note that 

propagating eigenmodes come in complex conjugate pairs; stationary eigenmodes have 

eigenvalues with zero imaginary parts. 

 

 
index σr σi eft (yr) 

1 -.062 0 16 

2 -.170 0 5.9 

3 (two modes) -.470 +/- .217 2.1 

4 (two modes) -.643 +/- 1.15 1.6 

5 -.847 0 1.2 

6 -1.10 0 0.91 

7 (two modes) -2.22 +/- 1.49 0.45 
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Table 2. IPCC coupled GCMs used in this paper. 

Abbreviation Model and developer Length of 
run (yr) 

BCCR BSM2.0 
Bjerknes Centre for Climate Research 

250 

CCCM CGCM3.1_T63 
Canadian Centre for Climate Modelling and Analysis 

300 

CNRM CM3 
Centre National de Recherches Meteorologiques (Meteo-
France) 

250 

CSM CCSM3 
National Center for Atmospheric Research (NCAR)-led 
consortium 

500 

ECHAM ECHAM5 
Max Planck Institute, Germany 

500 

ECHO ECHO-G 
M&D Group, Max Planck Institute, Germany 

500 

GFDL-
CM2.0 

GFDL-CM2.0 
NOAA Geophysical Fluid Dynamics Laboratory 

500 

GFDL-
CM2.1 

GFDL-CM2.1 
NOAA Geophysical Fluid Dynamics Laboratory 

500 

GISS-AOM GISS-AOM 
NASA Goddard Institute for Space Studies 

250 

GISS/H GISS-EH 
NASA Goddard Institute for Space Studies 

400 

GISS/R GISS-ER 
NASA Goddard Institute for Space Studies 

500 

HADCM3 HadCM3 340 
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U. K. Met Office 

HADGEM HadGEM1 
U. K. Met Office 

130 

IPSL IPSL-CM4 
Institut Pierre Simon Laplace 

500 

MIROC/ME
DRES 

MIROC3.2 (medres) 
 

500 

MIROC/HIR
ES 

MIROC3.2 (hires) 
 

100 

MRI MRI-CGCM2.3.2a 
Meteorological Research Institute, Japan 

350 

PCM1 PCM1 
NCAR & U.S. Department of Energy 

500 
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FIGURES 

 

Fig. 1. Leading EOFs of Tropical SST (left panels) and North Pacific SST (right panels). 

Contour interval is arbitrary; red shading indicates positive values and blue shading 

indicates negative values. Also indicated is fraction of variance explained by each EOF 

for its respective field. 

Fig. 2. Local anomaly correlation of SST forecasts for the LIM. Top: One year forecast 

lead (left) and two year forecast lead (right). Bottom: LIM skill minus skill of persistence 

forecasts, for forecast leads of one year (left) and two years (right). Contour interval is 

0.1 with negative and zero contours indicated by blue shading and dashed lines. Shading 

of positive values starts at 0.1; redder shading denotes larger values of correlation. 

Fig. 3. Cross-validated forecast skill (by PC) for forecast leads of one (blue bars) and two 

(red bars) years. 

Fig. 4. Power spectra for the three leading Tropical PCs (red lines), compared to that 

predicted by the LIM (blue lines). Gray shading represents the 95% confidence interval 

determined from a 100000 yr run of the LIM (see text for further details). Thin black 

solid and dashed lines represent spectra from two different 100-yr periods from the LIM 

run. The green lines indicate spectra generated by the “fully uncoupled” version of the  

LIM (i.e., LNT=LTN=0 and 

! 

"
N
"
T

T

= 0; see section 5). In these log(frequency) versus 

power times angular frequency (ω) plots, the area under any portion of the curve is equal 

to the variance within that frequency band. 
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Fig. 5. Same as Fig. 4 but for the three leading North Pacific PCs. 

Fig. 6. Leading empirical normal modes. Contour interval is the same in all panels but is 

arbitrary. Red shading indicates one sign, and blue shading indicates the other sign. 

Fig. 7. Time series (αj(t)) of leading empirical normal modes shown in Fig. 6. Red line in 

top panel is July-June annual mean GISS global mean surface temperature, scaled to have 

the same mean and variance as α1(t) for ease of comparison. 

Fig. 8. Cross-validated forecast skill (by empirical eigenmode) for forecast leads of one 

(top panel) and two (bottom panel) years. Also shown is the predicted skill determined 

from (7). 

Fig. 9. Reconstructed PDO (from second least damped stationary eigenmode u2 plus 

leading propagating eigenmodes u3 and u4) compared to observed PDO. Red lines 

indicate times of “regime shifts.” 

Fig. 10. (Top) Correlation between “ENSO” (leading Tropical Pacific PC) and “PDO” 

(leading North Pacific PC) for observations, LIM, LIM with North Pacific forcing of 

Tropics removed, LIM with Tropics forcing of North Pacific removed, “fully uncoupled” 

LIM. (Bottom) Coherence between “ENSO” and “PDO” for observations, LIM, LIM 

with North Pacific forcing of Tropics removed, LIM with Tropics forcing of North 

Pacific removed, “partially uncoupled” LIM, “fully uncoupled” LIM. Coherence is 

calculated using the MATLAB “cohere” routine, in which a 10-year Hanning window is 

applied. 
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Fig. 11. Propagating eigenmode for the “North Pacific only” linear operator. Top panels: 

maps corresponding to a phase of π/4 (left) and 3π/4 (right) ); note that this eigenmode 

has a period of 18.8 yr (phase=2π). Bottom panels: Hovmoller diagrams showing the 

evolution of SST along two latitudes: 31oN (left) and 36oN (right). Time increases from 

bottom to top, showing one complete period with damping excluded. Shading 

conventions as in Fig. 6. 

Fig. 12. Variance of the three leading Tropical PCs from observations and LIM, 

compared to variances derived from the output of the IPCC coupled GCMs, for (left) 

annual means and (right) five-year running means. Dark gray bars indicate 95% 

confidence interval for variance based on 100-yr samples from the LIM. 

Fig. 13. Same as Fig. 12 but for the three leading North Pacific PCs. 

Fig. 14. Correlation between “ENSO” (leading Tropical Pacific PC) and “PDO” (leading 

North Pacific PC) for observations, LIM, and IPCC coupled GCMs, for July-June annual 

means (blue bars) and 5-yr running means (red bars). Green bars indicate 95% confidence 

interval for PDO-ENSO correlation based on 100-yr samples from the LIM (see text for 

further details). The correlations for the GISS/AOM model are negative and so are not 

shown. 

Fig. 15. Decorrelation timescales of the projection time series of the leading eigenmodes 

in observations and in IPCC coupled GCMs.  
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Fig. 1. Leading EOFs of Tropical SST (left panels) and North Pacific SST (right panels). 
Contour interval is arbitrary; red shading indicates positive values and blue shading 
indicates negative values. Also indicated is fraction of variance explained by each EOF 
for its respective field. 
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Fig. 2. Local anomaly correlation of SST forecasts for the LIM. Top: One year forecast 
lead (left) and two year forecast lead (right). Bottom: LIM skill minus skill of persistence 
forecasts, for forecast leads of one year (left) and two years (right). Contour interval is 
0.1 with negative and zero contours indicated by blue shading and dashed lines. Shading 
of positive values starts at 0.1; redder shading denotes larger values of correlation. 



 52 

 
 
Fig. 3. Cross-validated forecast skill (by PC) for forecast leads of one (blue bars) and two 
(red bars) years. 
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Fig. 4. Power spectra for the three leading Tropical PCs (red lines), compared to that 
predicted by the LIM (blue lines). Gray shading represents the 95% confidence interval 
determined from a 100000 yr run of the LIM (see text for further details). Thin black 
solid and dashed lines represent spectra from two different 100-yr periods from the LIM 
run. The green lines indicate spectra generated by the “fully uncoupled” version of the 
LIM (i.e., LNT=LTN=0 and 

! 

"
N
"
T

T

= 0; see section 5). In these log(frequency) versus 
power times angular frequency (ω) plots, the area under any portion of the curve is equal 
to the variance within that frequency band. 
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Fig. 5. Same as Fig. 4 but for the three leading North Pacific PCs. 
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Fig. 6. Leading empirical normal modes. Contour interval is the same in all panels but is 
arbitrary. Red shading indicates one sign, and blue shading indicates the other sign. 
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Fig. 7. Time series (αj(t)) of leading empirical normal modes shown in Fig. 6. Red line in 
top panel is July-June annual mean GISS global mean surface temperature, scaled to have 
the same mean and variance as α1(t) for ease of comparison. 
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Fig. 8. Cross-validated forecast skill (by empirical eigenmode) for forecast leads of one 
(top panel) and two (bottom panel) years. Also shown is the predicted skill determined 
from (7). 
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Fig. 9. Reconstructed PDO (from second least damped stationary eigenmode u2 plus 
leading propagating eigenmodes u3 and u4) compared to observed PDO. Red lines 
indicate times of “regime shifts.” 
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Fig. 10. (a) Correlation between “ENSO” (leading Tropical Pacific PC) and “PDO” 
(leading North Pacific PC) for observations, LIM, LIM with North Pacific forcing of 
Tropics removed, LIM with Tropics forcing of North Pacific removed, “fully uncoupled” 
LIM. (b) Coherence between “ENSO” and “PDO” for observations, LIM, LIM with 
North Pacific forcing of Tropics removed, LIM with Tropics forcing of North Pacific 
removed, “partially uncoupled” LIM, “fully uncoupled” LIM. Solid lines indicate runs 
where correlated noise is removed (

! 

"
N
"
T

T

= 0), while dashed lines indicate 
corresponding runs where the noise structure is unaltered. Coherence is calculated using 
the MATLAB “cohere” routine, in which a 10-year Hanning window is applied. 
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Fig. 11. Propagating eigenmode for the “North Pacific only” linear operator. Top panels: 
maps corresponding to a phase of π/4 (left) and 3π/4 (right); note that this eigenmode has 
a period of 18.8 yr (phase=2π). Bottom panels: Hovmoller diagrams showing the 
evolution of SST along two latitudes: 31oN (left) and 36oN (right). Time increases from 
bottom to top, showing one complete period with damping excluded. Shading 
conventions as in Fig. 6. 
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Fig. 12. Variance of the three leading Tropical PCs from observations and LIM, 
compared to variances derived from the output of the IPCC coupled GCMs, for (left) 
annual means and (right) five-year running means. Dark gray bars indicate 95% 
confidence interval for variance based on 100-yr samples from the LIM. 

Annual variability Decadal variability 
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Fig. 13. Same as Fig. 12 but for the three leading North Pacific PCs.

Annual variability Decadal variability 
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Fig. 14. Correlation between “ENSO” (leading Tropical Pacific PC) and “PDO” (leading 
North Pacific PC) for observations, LIM, and IPCC coupled GCMs, for July-June annual 
means (blue bars) and 5-yr running means (red bars). Green bars indicate 95% confidence 
interval for PDO-ENSO correlation based on 100-yr samples from the LIM (see text for 
further details).  The correlations for the GISS/AOM model are negative and so are not 
shown. 
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Fig. 15. Decorrelation timescales of the projection time series of the leading eigenmodes 
in observations and in IPCC coupled GCMs.  
 


